Optimization of Naïve Bayes uses the genetic algorithm for classification data
نویسندگان
چکیده
منابع مشابه
Macro for Naïve Bayes Classification
The supervised classification also known as pattern recognition, discrimination, or supervised learning consists of assigning new cases to one of a set of pre-defined classes given a sample of cases for which the true classes are known. The Naïve Bayes (NB) technique of supervised classification has become increasingly popular in the recent years. Despite its unrealistic assumption that feature...
متن کاملSemantic Naïve Bayes Classifier for Document Classification
In this paper, we propose a semantic naïve Bayes classifier (SNBC) to improve the conventional naïve Bayes classifier (NBC) by incorporating “document-level” semantic information for document classification (DC). To capture the semantic information from each document, we develop semantic feature extraction and modeling algorithms. For semantic feature extraction, we first apply a log-Bilinear d...
متن کاملCost-sensitive Naïve Bayes Classification of Uncertain Data
Data uncertainty is widespread in real-word applications. It has captured a lot of attention, but little job has been paid to the research of cost sensitive algorithm on uncertain data. The paper proposes a novel cost-sensitive Naïve Bayes algorithm CS-DTU for classifying and predicting uncertain datasets. In the paper, we apply probability and statistics theory on uncertain data model, define ...
متن کاملInterpretable Boosted Naïve Bayes Classification
Voting methods such as boosting and bagging provide substantial improvements in classification performance in many problem domains. However, the resulting predictions can prove inscrutable to end-users. This is especially problematic in domains such as medicine, where end-user acceptance often depends on the ability of a classifier to explain its reasoning. Here we propose a variant of the boos...
متن کاملFeature selection using genetic algorithm for classification of schizophrenia using fMRI data
In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2021
ISSN: 1742-6588,1742-6596
DOI: 10.1088/1742-6596/1918/4/042039